Outline

- We will move to room 210 from Wednesday (except Wed Oct 8 – room 170)
- Policy addition
- HW review
- RC circuits
 - Differentiation/integration of signal
 - Response to sine waves
 - High/low pass filters

HW grading

- Only overall grades are given.
- If HW is pretty much perfect, you get 100% (√⁺; not quite perfect; or √⁺⁺)
- If something substantial is desired, you get 80% (√⁻; or √⁻ if something significant is missing)
- If not submitted on time, or very little effort is made, you get 0%.

Tardiness to lab

- If you miss more than 5 minutes of lab (like being late), it will count as half of absence.
- If you miss more than 30 minutes of lab (like being late), it will count as an absence.
- Would copies of PP files on web useful?

HW Q6

- From (4), \(V_{\text{out}} = V_{\text{in}} \frac{R_2}{R_L} \frac{R_1}{R_1 + R_2 + R_3} \).
- From (5), \(V_{\text{out}} = V_e \frac{R_2}{R_e + R_1} \).
- So for (6), these two expression must give equal value for any values of \(R_e \).
- \(V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} \frac{R_1}{R_1 + R_2 + R_3} = V_e \frac{R_2}{R_e + R_1} \).

Arithmetic

- \(V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} (R_1 + R_2 + R_3) = V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} \frac{R_1}{R_1 + R_2 + R_3} \).
- Simplify LHS (multiply num/den by \(R_2 + R_1 \):)
 - \(V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1 = V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1
 - [V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1] = V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1
 - [V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1] = V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} + R_1
 - V_{\text{in}} \frac{R_2}{R_1 + R_2 + R_3} = R_1 = R_1 \frac{R_2}{R_1 + R_2 + R_3}

Arithmetic II

- Or from
 - \(V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} = V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} \).
 - Remove denominators
 - \(V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} = V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} \).
 - Eliminate \(R_1 \) and equate terms with the same power of \(R_2 \).
 - \(V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} = V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} \).
 - \(V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} = V_{\text{in}} \frac{R_2}{R_2 + R_1} \frac{R_1}{R_1 + R_2 + R_3} \).
HW Q9

• From (7),
 – \(V_{\text{out}} = 110 \times R_2 / (R_1 + R_2) \) for (b) and
 – \(V_{\text{out}} = V_e \) for (c).
 – For the two circuits to be equivalent there two
 must equal. So
 – \(110 \times R_2 / (R_1 + R_2) = V_e \); same as (6).

HW Q9 Cont’d

• From (8),
 – \(I_s = 110 / R_1 \) for (b) and
 – \(I_s = V_e / R_e \) for (c).
 – For the two circuits to be equivalent there two
 must equal. So
 – \(110 / R_1 = V_e / R_e \).
 – So, \(R_e = V_e \times R_1 / 110 = 110 \times R_2 / (R_1 + R_2) \times R_1 / 110 \)
 \(= R_1 R_2 / (R_1 + R_2) \); same as (6).

Recap

• \(I = C \frac{dV}{dt} \): Ohm’s Law for capacitor.
• Kirchhoff’s Laws still apply to circuits, and
everything is the same.
• Now everything is a function of time, and
• \(dV/dt \) or \(\int I \, dt \) is involved, so equations
 will be differential equations, rather than
 algebra equations.

Simple RC circuit(s)

• General solution is \(V_1 = A e^{-t/RC} \), and
• Specific solution is \(V_1 = \frac{\exp(-t/RC) \int_0^t e^{(t-\tau)/RC} V_0(\tau) \, d\tau}{RC} \)

Specific case I

• \(V_1(0) = 0 \) for \(t < 0 \) and
 – \(V_1 = V_0 \) for \(t > 0 \). i.e. step function input.
• Then
 – \(V_1(0) = V_0 - A e^{-0} \).
 – Assuming that \(V_1(0) = 0, A = V_0 \).
 – \(V_1 = V_0 (1 - e^{-t/RC}) \).
• One may not intentionally
 soften the wedge of a square pulse
• Unwanted capacitance in a
circuit may do this to distort pulses.

Simple RC circuit II

• Just switched \(R \) and \(C \).
Just “reverse”

- \(V_2(t) = V_m(t) - V_1(t) \).
- For step function input voltage, \(V_2(t) = V_0 e^{-t/RC} \).
- This is useful when you want to pick up changing part of your signals.
- Examples?

Differentiator

- This same circuit is also called “differentiator.”
- For example, if the input is constantly rising voltage:
 \(V_2(t) = aRC \times (1 - e^{-t/RC}) \).
- Does not look exactly like the constant you would expect from name.

- \(V_2(t) = \alpha C \times (1 - e^{-t/RC}) \).
- However, it is \(\sim \alpha RC \)
 when \(t = RC \), which is proportional to \(\alpha = \frac{dV_1}{dt} \).

So is this an integrator?

- Yes.
- For the step function input, for example,
 \(V_2(t) = V_0(1 - e^{-t/RC}) \).
 When \(t = RC \),
 \(V_2(t) = V_0(tRC) \),
 which increases at a constant rate.

How do these circuits behave with sine-shaped input?

- \(V_m(t) = A \cos(\omega t) \)
- Assume that \(V_1 = B \cos(\omega t + \varphi) \)
- Substitute this into \((V_m - V_1)/R = C \frac{dV_1}{dt} \)
- \(A \cos(\omega t) - B \cos(\omega t + \varphi) = -RC\omega B \sin(\omega t + \varphi) \)
- \([A - B \cos\varphi] \cos\omega t + B \sin\varphi \sin\omega t = -RC\omega B [\sin\varphi \cos\omega t + \cos\varphi \sin\omega t] \)

More math!

- \(A - B \cos\varphi = -RC\omega B \sin\varphi \)
- \(B \sin\varphi = -RC\omega B \cos\varphi \)
- From the 2nd Eq. \(\tan\varphi = -RC\omega \), or \(\varphi = -\tan^{-1}(RC\omega) \).
- From the first Eq. \(B = A/[\cos\varphi - RC\omega \sin\varphi] = A/[1+(RC\omega)^2]^{1/2} \).
What does this mean?

- \(\varphi = -\tan^{-1}(RC\omega) \),
- \(B = A[1+(RC\omega)^2]^{1/2} \).

- The first one says that the output signal is shifted in phase relative to the input.
- The 2nd line says the voltage divider works a bit different from resistive voltage divider!

When \(\omega \) is \(\sim 0 \), or \(\rightarrow \infty \)

- \(\omega \rightarrow 0 \)
 - \(\varphi = -\tan^{-1}(RC\omega) \rightarrow 0 \), and \(B = A \). i.e. no change in signal

- \(\omega \rightarrow \infty (RC\omega \gg 1) \)
 - \(\varphi \rightarrow -\pi/2 (-90^\circ) \) and \(B \ll A \)
 - If cosine is input, output is (negative sign here I had in the lecture was wrong) sine, like integration.
 - Considering that \(t \propto 1/\omega \), this is the condition as \(t \ll RC \).