The circuit shown in Figure B is a variation of the familiar inverting amplifier circuit shown in Figure A. Circuit B is often preferred over A because for identical input impedance and gain, circuit B requires much lower resistor values and, therefore, is less affected by (Johnson) noise.

Your task is to select appropriate resistor values for the circuits in Figure A and B that result in identical input impedances and gain for the two circuits, i.e., $Z_{in} = 100 \, \text{kOhm}$ and a (closed loop) gain $V_{out}/V_{in} = 10^4$.

(For all subsequent questions, you may assume that you are working with ideal op-amps.)

a) For the circuit in Figure A what should R_1 be if the $Z_{in} = 100 \, \text{k}$?

b) Based on your previous answer, calculate the value for R_f if the gain, V_{out}/V_{in}, of this circuit is to be -10^4. Is this a “realistic” resistor value?

c) For the circuit in Figure B what should R_1 be if the $Z_{in} = 100 \, \text{k}$?

d) For the circuit shown in Figure B calculate V_{out}/V_{in} in terms of R_1, R_2, and R_3. (Hint: you may want to express some of your equations using the voltage at the node formed by R_2 and R_3.)

e) If none of the resistors in Figure B can exceed 300k what are the values for R_2 and R_3 if V_{out}/V_{in} of this circuit is to be -10^4 and $Z_{in} = 100 \, \text{k}$.