Outline

• How to find the least noisy amplifier for your application?

SNR, NF, etc.

• What you really want is the best SNR – Signal to noise ratio, or its db version – take the log of the ratio.

• SNR = 10 log_{10}(V_s^2 / V_n^2).
 – Usually, V_n grows as the bandwidth of the amplifier increases, whereas V_s stays the same once the bandwidth covers where the signal is. So it’s crucial that your amplifier covers only minimum necessary frequency band.
 – Bandpass filter gives you this.

• Since this figure cannot be specified for an op-amp (without knowing the signal level, V_s), we use NF to specify the inherent capability (figure of merit) of an amp, where the noise of the amp is compared to that of the inherent Johnson noise (at its input):

• NF = 10 log_{10}((V_n^2 + V_J^2) / V_J^2), where V_n is the noise from the amp, and V_J is the Johnson noise, which is an unavoidable noise.

• NF depends on the frequency as well as the source impedance, R_s (only real part counts for noise!)
 – high R_s makes V_J large and masks V_n. This is not a real improvement of your circuit even though NF will improve.
 – Note that V_n often depends on R_s.

• Usually, since you don’t have control over R_s, you should choose the amp with smallest NF for your R_s and signal frequency.
 – Note that you could use a transformer to change R_s if that really improves V_n.
 – Adding extra resister in series with the signal source to increase R_s, on the other hand, is not a good idea since it increases V_J without increasing V_s (often decrease it).

How can we reduce V_n?

• It is customary to specify the noise performance of an amplifier using e_n and i_n.

• e_n is the noise voltage which would be added to the signal at the input, whereas

• i_n is the noise current which would flow from (to) the input and the signal source.

• They tell us that when a signal source of output impedance, R_s, and signal voltage v_s is connected to this amp, you will find a voltage of $v_{out} = G\{v_s + e_n + (R_s i_n)\}$ at the output.

• In terms of RMS voltage, then the output voltage due to the noise is $v_{out\text{-rms}} = G\sqrt{e_n^2 + (R_s i_n)^2 + 4kTR_s}$.

• SNR = 10 log_{10}(v_s^2 / (e_n^2 + (R_s i_n)^2 + 4kTR_s))

Typical values of e_n and i_n
• e_n ranges from 1 nV/$\sqrt{\text{Hz}}$ to close to 1 µV/$\sqrt{\text{Hz}}$.
• i_n ranges from 0.1 fA/$\sqrt{\text{Hz}}$ to close to 10 pA/$\sqrt{\text{Hz}}$.
• If I take LT1028, $e_n = 1$ nV/$\sqrt{\text{Hz}}$ and $i_n = 3$ pA/$\sqrt{\text{Hz}}$
• Since this amp has rather small e_n, it will perform well if the signal source has small R_s. But if R_s is large, the increase in the noise due to i_n is rapid and will not perform well.
• Instead you would choose something like OP-77 whose e_n is 10 nV/$\sqrt{\text{Hz}}$, 10 times larger than LT1028, but $i_n = 0.1$ pA/$\sqrt{\text{Hz}}$.
• When R_s is small, OP-77 does not perform nearly as well as LT1028 due to its large e_n. But for example, if $R_s = 100k\Omega$, OP-77 is better (14 nV/$\sqrt{\text{Hz}}$ vs. 300 nV/$\sqrt{\text{Hz}}$).
• Fig. 7.60 in page 449 of H&H illustrates this point graphically.
• Diagonal line represent the minimum noise (no noise from the amp) due to the Johnson noise of the signal source, $4kT R_s$.
• If R_s is small LT1028 will give you the smallest noise whereas with larger R_s, OP27, OP37, LT1007 is better (1 k\Ω) and OP77, LT1001 are better at 100 k\Ω.
• In summary, if your signal source has large R_s, you want to choose small i_n (noise current) amplifier. If R_s is small, you should use small e_n amp.

Effect of feedback circuit

• In real life, one almost never uses op-amp without negative feedback (to improve linearity, etc.). How does that affect the noise performance?

\[
V_+ = v_s + e_n + i_n R_s + v_R, \quad \text{where} \quad \langle v_R^2 \rangle = 4kT R_s.
\]
\[
V_- = e_n' + i_n' R_{//} + v_R + V_{\text{out}} *[R_1/(R_1+R_2)], \quad \text{where} \quad R_{//} = R_1//R_2 \quad \text{and} \quad \langle v_{R//}^2 \rangle = 4kT R_{//}.
\]
• Assuming the golden rule of op-amp circuit: $V_+ = V_-,$
• $V_{\text{out}} = [(R_1+R_2)/R_1][v_s + e_n + i_n R_s + v_R - (e_n' + i_n' R_{//}) + v_R]$
• Taking rms noise voltages, $V_n^2 = \langle e_n^2 + (i_n R_s)^2 + v_R^2 + e_n' + (i_n' R_{//})^2 + v_{R//}^2 \rangle$.
• This should match with $V_n^2 = e_A^2 + (i_A R_s)^2 + 4kT R_s$.

• Therefore, \(i_A^2 = i_n^2 \), and \(e_A^2 = e_n^2 + e_n'^2 + (i_n'R_{\text{r}})^2 + v_{R_{\text{r}}}^2 = 2e_n^2 + (i_n'R_{\text{r}})^2 + v_{R_{\text{r}}}^2 \), where we used that \(\langle e_n^2 \rangle = \langle e_n'^2 \rangle \) (the noise voltages for inverting and non-inverting inputs are the same – and independent).

• In H&H, \(2e_n^2 \) is redefined as \(e_n^2 \) (“\(e_n \) is the adjusted noise voltage for the differential configuration, i.e. 3 dB larger than for a single-transistor stage.”)