Binary Number Representations

- Phys4051
- Fall 2003

Introduction

- Why?
 - Storage
 - Arithmetic
 - Interpretations / Decoding

- The (binary) 1001 1001 representation corresponds to which of the following decimal values:
 a) 99
 b) 153
 c) -103

Concepts & Notation

- Byte vs. Bit:
 - 1 Byte = 8 Bits
- Base Notation:
 - 1101\(_{10}\) vs. 1101\(_{2}\)
 - 4051\(_{10}\)
 - What is 0.11\(_{2}\) in \(_{10}\)?

UNSIGNED Binary Number Representations (1)

- Size / Limitations / Advantages
 1. ASCII (Unicode)
 - One Byte (Actually only 7 bits needed)
 - '0' = 48 \(_{10}\), '1' = 49 \(_{10}\), '2' = 50 \(_{10}\) etc.
 (a' = 65 \(_{10}\), 'b' = 66 \(_{10}\) etc.)
 - 49 + 50 = 51
 - 4051\(_{10}\) =

UNSIGNED Binary Number Representations (2)

- BCD (Binary Coded Decimals)
 - Each (decimal) digit is converted to binary
 - Example: 4051\(_{10}\)=
 (BCD)
 - Applications: Displays
 - Needs 4 bits for each digit
 - Mathematically not very convenient

UNSIGNED Binary Number Representations (3)

- (Unsigned) Binary
 - Computer stores ALL numbers ultimately in binary representation anyway
 - Efficient for mathematical operations because each bit position is directly related to its base
4. Hexadecimal (Hex) Base 16
 - '0' = 0, '1' = 1, etc, '9' = 9, '10' = A, '11' = B, '12' = C, '13' = D, '14' = E, '15' = F
 - Notations: 0xABCD, hABCD, ABCDh or $ABCD$
 - Still stored in binary
 - Example: what is 0x10 in base 10?

Conversion Methods (1)
1. Modulus (Remainder) Operation with the (smallest) Base Value
 - Keep dividing by the base value and keep track of the remainders
 - Example: 23|10 = \?|2

Conversion Methods (2)
2. Modulus (Remainder) Operation with the Largest Base Power
 - Keep dividing by the largest base powers
 - Example: 23|10 = \?|2

Conversion Methods (3)
3. Hexadecimal Notation
 - Convenient for large(r) numbers
 - Go from Decimal to Hex to Binary or vice versa
 - Use previous method and remember the hex base powers: 16, 256, 4096 etc.
 - Example: 23|10 = \?|16 = \?|2

Conversion Methods (4)
3. More Hexadecimal Examples
 - Example: 4051|10 = \?|16 = \?|2
 - General Solution:
 - Determine the smallest fractional value, x, that can be expressed in n bits
 - Multiply the original value by 1/x
 - Convert to (hex and then to) binary
 - Add Decimal Point

Conversion Methods (5)
3. Fractional Example:
 - Express 0.3333333|10 in base 2 using a maximum 8 bits (not counting decimal point)
 - General Solution:
 - Determine the smallest fractional value, x, that can be expressed in n bits
 - Multiply the original value by 1/x
 - Convert to (hex and then to) binary
 - Add Decimal Point
SIGNED Binary Number Representations (1)

- If you want to use it in mathematical operations it must obey the following rule:
 \[Y + (-Y) = 0 \]
- Signed Magnitude Representation
- 2’s Complement

SIGNED Binary Number Representations (2)

- Signed Magnitude (3 Bit Example)
 - First Bit Indicates Sign (0 is +, 1 is -)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>+0</td>
<td>4</td>
<td>100</td>
<td>???</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>+1</td>
<td>5</td>
<td>101</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>+2</td>
<td>6</td>
<td>110</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>+3</td>
<td>7</td>
<td>111</td>
<td>-3</td>
</tr>
</tbody>
</table>

SIGNED Binary Number Representations (3)

- 2’s Complement (3 Bit Example)
 - Find a system so that \(Y + (-Y) = 0 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>+0</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>+1</td>
<td>5</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>+2</td>
<td>6</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>+3</td>
<td>7</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>

SIGNED Binary Number Representations (4)

- 2’s Complement Formal Approach:
 - Find One’s Complement, i.e., negate each bit separately
 - Add 1 to One’s Complement: This is now Two’s Complement
 - Check: Add two’s complement to the original number: the result should be 0 (except for the overflow bit)

SIGNED Binary Number Representations (5)

- Example find –3 using 2’s Complement (using 3 Bits):
 1: Find +3 Binary
 2: Find its 1’s Complement
 3: Add 1; this is 2’s complement or -3
 4: Check: Add +3 and –3 (check prev. table)

SIGNED Binary Number Representations (6)

- Example find –5 using 2’s Complement (using 3 Bits):
 1: Find +5 Binary
 2: Find its 1’s Complement
 3: Add 1; this is 2’s complement or -5
 4: Check: Add +5 and –5 Conclusion?
SIGNED Binary Number Representations (7)

- Example find \(-1\) using 2’s Complement (using 8 Bits):
 1: Find +1 Binary
 2: Find its 1’s Complement
 3: Add 1; **this is 2’s complement or \(-1\)**
 4: Check: Add +1 and \(-1\)

Binary Arithmetic

- Addition / Subtraction
- Multiplication
- Left Shift / Right Shift

Binary Arithmetic (2)

- Multiplication: \(5 \times 4 = ?\)

 101 x 100

Binary Arithmetic (3)

- Shift Operations
 - Example 1: Left shift \(3_{10}\)
 - Example 2: Right shift \(13_{10}\)

Floating Point Representation

- Example: 4 Byte Floating Point Number in C has a range of +/- 3.4E+/-38 with 7 bits accuracy in the mantissa. How is it implemented?

 \(10\)_{10} = 0x 41 20 00 00 = 0100 0001 0010 0000 0000 0000 0000 0000

 ^ EXPON. ^ MANTISSA

Conclusions

- Computer stores only binary values; its interpretation (or decoding) is up to us
- ASCII (Unicode) vs. Binary Representation
- Signed vs. Unsigned Number Representation
- Mathematical operations with binary numbers, for example, 2’s Complement